问题:
设函数 g(x)=
1
3
x3+
1
2
ax2-bx(a,b∈R),在其图象上一点P(x,y)处的切线的斜率记为f(x).
(1)若方程f(x)=0有两个实根分别为-2和4,求f(x)的表达式;
(2)若g(x)在区间[-1,3]上是单调递减函数,求a 2+b 2的最小值.
设函数 g(x)=
x3+
ax2-bx(a,b∈R),在其图象上一点P(x,y)处的切线的斜率记为f(x).
(1)若方程f(x)=0有两个实根分别为-2和4,求f(x)的表达式;
(2)若g(x)在区间[-1,3]上是单调递减函数,求a 2+b 2的最小值.
1 |
3 |
1 |
2 |
(1)若方程f(x)=0有两个实根分别为-2和4,求f(x)的表达式;
(2)若g(x)在区间[-1,3]上是单调递减函数,求a 2+b 2的最小值.
参考答案: